(This is part three of three articles with excerpts from
“Tumor Angiogenesis as a Target for Dietary Cancer Prevention”
by Dr. William Li.)
Natural Anti-Angiogenesis Inhibitors
for Prevention of Cancer
Green Tea Catechins
After water, tea is the second most popular liquid in the world. Its consumption is linked with a decreased risk of colon, prostate, lung, esophageal, and other cancers.(65-67) Polyphenol catechins in tea, predominantly flavanols, possess antiangiogenic activity.(68-73)
EGCG (epigallocatechin-3-gallate) is a potent tea flavonoid that specifically inhibits endothelial cell proliferation stimulated by bFGF. Mice that consume the human equivalent of 2-3 cups of tea/day show inhibition of VEGF by as much as 70%, and reduction of tumor cell invasion by 50%.(73)
An Italian study involving men with high-grade prostate showed 30% of the placebo group progressed to prostate cancer, while the EGCG demonstrated a low progression rate of 3%.(74) A Japanese study had a 50% reduction in risk compared to lower green tea usage.(75)
Genistein
Genistein is an isoflavonoid found in soybeans, has antiangiogenic activity including angiogenesis inhibition, induction of apoptosis, inhibition of bFGF- and VEGF-driven cell proliferation, PDGF, G2, c-fos expression, NF-κB activation and growth factor signaling pathways.(76-80)
Historically, breast cancer incidence rates have been 4 to 7 times higher among white women in the US compared to in women in China or Japan. In fact, among women with breast cancer, soy food consumption has now been shown in numerous, large-scale studies to be significantly associated with decreased risk of death and recurrence, regardless of estrogen receptor status or tamoxifen use.(81) However, when Asian women migrate to the US, their breast cancer risk rises over several generations to reach that of US white women.(82-83)
Likewise, Japanese men in Hawaii who consume a high soy diet have low mortality from prostate cancer.(84)
Resveratrol
Resveratrol is a polyphenol found in more than 72 plant species, such as mulberries, peanuts, grapes, and grape products, including red wine of 1.5–3 mg/L.(85) Resveratrol at 3-4 mg (equivalent to 3-4 glasses red wine/day), inhibits angiogenesis, suppresses VEGF-, bFGF, VCAM-1, COX-2, MMP-9 and inhibits tumor vascularization.(86-90) That is quite a few benefits!
Additionally, the Health Professionals Follow-up Study identified a protective effect for prostate cancer with a 36% risk reduction in men drinking 2–4 glasses of red wine per week.(91)
Lycopene
Lycopene, a type of natural pigment in the carotenoid family, gives tomatoes and other fruits such as watermelon and papayas their bright red color. Lycopene is an angiogenesis inhibitor which suppresses signaling by PDGF and Platelet Activation Factor in vitro.(92)
In the Health Professionals Follow-Up Study of over 51,000 men, the highest quintile of lycopene consumption was found to have a 15% risk reduction for developing prostate cancer compared to men in the lowest quintile.(93) The risk reduction was even greater if tomato sauce was ingested; men consuming more than 2 servings/week had a nearly 23% risk reduction compared to men consuming less than 1 serving/month.
Omega-3 Polyunsaturated Fatty Acids
The best known sources of the long-chain omega-3 fatty acids – docosahexaenoic acid (DHA) and eicosapentaenoic (EPA) – are cold water oily fish such as salmon, herring, mackerel, anchovies, sardines, and trout. Both preclinical and epidemiological studies suggest that omega-3 PUFAs are effective cancer preventative agents. Omega-3 fatty acids have been shown to suppress a variety of tumors.(94) Intake of omega-3 PUFAs from seafood has been associated with a decreased risk for certain cancers, including pancreatic, colon, breast, and prostate cancer.
(Oils are hard to mix with other nutrients and are a lot of bulk. As a result, we recommend adding fish oil capsules to your diet if you do not eat much of the fish above.)
Cruciferous Vegetables – Glucosinolates, Isothiocyanates, and Indole-3-carbinol
This includes cabbage, broccoli, cauliflower, collard greens, mustard greens, radishes, Brussel sprouts, bok choy, and kale. There are tons of studies showing the value of these things but this is more a matter of including these things in your veggie diet than supplements.
Flavonoids
Flavonoids are a family of polyphenols that serve as important plant pigments. They are subcategorized by chemical structure into:
flavonols (such as quercetin),
anthocyanidins,
proanthocyanidins,
ellagic acid,
ellagitannins, and
isoflavones (such as genistein),
Flavonoids are antiangiogenic through a variety of mechanisms; they inhibit VEGF expression, inhibit endothelial cell migration, and decrease matrix metalloproteinases MMP-2 and MMP-9.(95-99)
The U.S. Department of Agriculture identifies spinach, onions, parsley, beets, and thyme among high flavonoid-containing vegetables and herbs.(100) Fresh salad greens such as lettuce, chicory, arugula, and red lettuce are also rich in polyphenolic flavonoids.(101)
Quercetin
Its antiangiogenic properties include inhibition of PDGF and Platelet Activation secretion from tumor cells and inhibition of endothelial cell proliferation and migration.(102) For example, quercetin has been shown to reduce VEGF as much as 40%.(103) A large prospective study of 41,000 women living in Iowa between the ages of 55 and 69 found a number of flavonoid-containing leafy greens (abundant in quercetin) was associated with a significant risk reduction for lung cancer.(104)
One of the richest sources of dietary flavonoids is red onion, which has particularly high levels of quercetin. There was a nearly 73% risk reduction for ovarian cancer in the population when comparing those who frequently consumed onion. Similarly, there was an 88% risk reduction for esophageal cancer in the group with highest versus lowest onion intake. In a separate Dutch cohort study, consumption of at least half an onion/day was associated with 50% risk reduction in gastric cancer.(105)
Anthocyanins
These are pigments that are present in many types of berries and grapes as well as red wine. They exhibit a purple color at neutral pH, red in acidic, and blue in alkaline conditions. They have been shown to inhibit angiogenesis and tumor growth in experimental animals.(106)
Animals fed an anthocyanin-rich extract (5% in diet) obtained from black raspberries (BRB), blackberries, or strawberries showed a reduced number of esophageal tumors as compared to controls –41% less by BRB, 46% less by blackberries, and 24% less by strawberries.(107)
Berries are also rich in other natural polyphenols such as ellagic acid, which contributes to bioactivity.
Proanthocyanidins
These are a type of tannin—large polymeric chains of flavonoids—found in many plants and fruits, notably cacao, cinnamon, cranberry, apples, grapes, black current, chokeberry, and persimmon. Proanthocyanidins are thought to be the major source of flavonoids ingested in the Western diet.(108)
Proanthocyanidins constitute 60% of the polyphenol content in cacao, the source of chocolate(109) with a (–)-epicatechin, similar to green tea.(110) Cocoa extract downregulates the expression of ErbB2 tyrosine kinase and inhibits TNF-alpha-induced VEGF secretion in vitro.(111)
Procyanidins are also found in cinnamon, which have been found to inhibit angiogenesis and tumor growth. Cinnamon extract inhibits VEGF receptor-2 on endothelial cells and suppresses endothelial cell proliferation, migration, and tube formation in vitro.(112) The cinnamon extract suppressed the expression of angiogenic factors VEGF, FGF, and TGF-? as well as COX-2 and HIF-1alpha, which promote angiogenesis. In addition, the cinnamon extract suppresses melanoma metastasis as measured by the size and weight of the spleen and draining lymph nodes of mice bearing melanoma in vivo.(113)
Many edible berries also contain proanthocyanidins, including the American cranberry, black currants, and grapes. Chokeberries, named because of their extreme astringency, contain among the highest levels of proanthocyanidins detected.(114)
Both apples and apple juice are rich sources of procyanidins in addition to other polyphenols previously described such as quercetin and catechins. Based on the USDA Continuing Survey of Food Intakes by Individuals (CSFII), apples are a major source of proanthocyanidins in the U.S. diet.(115)
In the Nurses Health Study involving 77,000 women, a statistically significant 37% risk reduction for lung cancer was observed among women for increases of 1 serving per day of apples or pears.(116) An analysis of case-control studies conducted in Italy found that people who consumed at least one apple per day had a significantly reduced risk of colorectal cancer and cancers of the oral cavity, larynx, breast, and ovary relative to those who ate less than an apple a day.(117)
Ellagitannins
These are glycosides of the flavonoid ellagic acid and can be found in numerous types of fruits and nuts including pomegranate, strawberries, blackberries, raspberries, muscadine grapes, walnuts, and pecans.(118) Upon consumption, ellagitannins are hydrolyzed to ellagic acid which is antiangiogenic.
All parts of the pomegranate contain high levels of ellagitannins, have been shown to inhibit the growth of prostate cancer in both in vitro and in vivo laboratory experiments. Interestingly, pure pomegranate juice has been found to be more potent than its separated individual polyphenol components – suggesting that this might be a good drink to have around vs a supplement.(119)
Menaquinone
Menaquinone (vitamin K2) is associated with a reduced risk for developing several forms of cancer, suppresses angiogenesis, enhance tumor apoptosis, and inhibit the proliferation of cancer cells.(120) Food containing menaquinone were associated with significantly lower incidences of lung cancer and 62% less prostate cancer.
Curcumin (Tumeric)
Curcumin (diferuloylmethane), a flavonoid derived from the plant Curcuma longa, is present in tumeric spice. There are some people that name curcumin as their #1 nutrient of all time for all purposes! It certainly has its place here also. It has chemopreventive and anti-angiogenic activity. It also inhibits carcinogenesis in skin, stomach, intestines, and liver.
Dietary ingestion of curcumin has been shown to prevent the formation of colon polyps, suppress proliferation of colon cancer and prostate cancer cells, and decrease intra-tumoral microvessel density.(121-123) Since curcumin takes a lot of volume (500 – 2,000 mg/day), it makes since to include it in your diet in addition to some supplementation.
Beta-cryptoxanthin
Papaya is a rich source of carotenoids, with the same lycopene content as tomatoes, but twice the beta-cryptoxanthin content. In the Singapore Chinese Health Study, 63,257 Chinese men and women participated in a prospective study of diet and cancer.(124) In the first 8 years of follow-up there was a 27% risk reduction among all subjects, and a 37% risk reduction among current smokers.
In a study of women, diet, and breast cancer risk from the Nurses’ Health Study, total carotenoids were associated with a 50% reduction in breast cancer risk.
Other Dietary Inhibitors
We have identified antiangiogenic activity other dietary-derived chemopreventive molecules. These include:
brassinin – a phytoalexin found in Chinese cabbage;
hesperidin and naringenin – the citrus-derived bioflavonoids
ellagic acid – from berries, pomegranate, and grapes;
silymarin – from milk thistle and artichoke;
organosulfur allyl disulfide – from garlic.(125-129)
Conclusion and Future Directions
Angiogenesis limits the development of all known cancers. Its early intervention and inhibition suppresses tumor growth, progression, and metastases. As such, tumor angiogenesis is a critical target for cancer prevention.
Natural anti-angiogenic molecules are present in many dietary sources. They have a wide spectrum of abilities that can suppress the growth of microscopic tumors. The key is to have a blend of the most important ingredients!
With that in mind, controlling blood vessel growth through nutrient extracts may help redefine the prevention throughout an individual’s lifetime, from infancy through adulthood. It may also be a leap forward in the suppression of early stage cancer – all through what nature has to offer!
References
- W. Bollag, “Experimental basis of cancer combination chemotherapy with retinoids, cytokines, 1,25-dihydroxyvitamin D3, and analogs,” Journal of Cellular Biochemistry, vol. 56, no. 4, pp. 427–435, 1994.
- D. J. Mantell, P. E. Owens, N. J. Bundred, E. B. Mawer, and A. E. Canfield, “1α,25-dihydroxyvitamin D3 inhibits angiogenesis in vitro and in vivo,” Circulation Research, vol. 87, no. 3, pp. 214–220, 2000.
- L. P. Marson, K. M. Kurian, W. R. Miller, and J. M. Dixon, “The effect of tamoxifen on breast tumour vascularity,” Breast Cancer Research and Treatment, vol. 66, no. 1, pp. 9–15, 2001.
- B. A. Ruggeri, C. Robinson, T. Angeles, J. Wilkinson, and M. L. Clapper, “The chemopreventive agent oltipraz possesses potent antiangiogenic activity in vitro, ex vivo, and in vivo and inhibits tumor xenograft growth,” Clinical Cancer Research, vol. 8, no. 1, pp. 267–274, 2002.
- M. W. Lingen, P. J. Polverini, and N. P. Bouck, “Inhibition of squamous cell carcinoma angiogenesis by direct interaction of retinoic acid with endothelial cells,” Laboratory Investigation, vol. 74, no. 2, pp. 476–483, 1996.
- Y. Takahashi, M. Mai, and K. Nishioka, “Alpha-difluoromethylornithine induces apoptosis as well as antiangiogenesis in the inhibition of tumor growth and metastasis in a human gastric cancer model,” International Journal of Cancer, vol. 85, no. 2, pp. 243–247, 2000.
- C. Jiang, W. Jiang, C. Ip, H. Ganther, and J. Lu, “Selenium-induced inhibition of angiogenesis in mammary cancer at chemopreventive levels of intake,” Molecular Carcinogenesis, vol. 26, no. 4, pp. 213–225, 1999.
- T. Cai, G. Fassina, M. Morini et al., “N-acetylcysteine inhibits endothelial cell invasion and angiogenesis,” Laboratory Investigation, vol. 79, no. 9, pp. 1151–1159, 1999.
- S. E. Ebeler, C. A. Brenneman, G. S. Kim et al., “Dietary catechin delays tumor onset in a transgenic mouse model,” American Journal of Clinical Nutrition, vol. 76, no. 4, pp. 865–872, 2002.
- Z. Wang, C. F. Fuentes, and S. M. Shapshay, “Antiangiogenic and chemopreventive activities of celecoxib in oral carcinoma cell,” Laryngoscope, vol. 112, no. 5, pp. 839–842, 2002.
- C. S. Yang and Z. Y. Wang, “Tea and cancer,” Journal of the National Cancer Institute, vol. 85, no. 13, pp. 1038–1049, 1993.
- Z. Y. Wang, L. D. Wang, M. J. Lee et al., “Inhibition of N-nitrosomethylbenzylamine-induced esophageal tumorigenesis in rats by green and black tea,” Carcinogenesis, vol. 16, no. 9, pp. 2143–2148, 1995.
- G. Y. Yang, Z. Y. Wang, S. Kim et al., “Characterization of early pulmonary hyperproliferation and tumor progression and their inhibition by black tea in a 4-(methylnitrosamino)-1- (3-pyridyl)-1-butanone-induced lung tumorigenesis model with A/J mice,” Cancer Research, vol. 57, no. 10, pp. 1889–1894, 1997.
- Z. Y. Wang, S. J. Cheng, Z. C. Zhou et al., “Antimutagenic activity of green tea polyphenols,” Mutation Research, vol. 223, no. 3, pp. 273–285, 1989.
- Z. Y. Wang, J. Y. Hong, M. T. Huang, K. R. Reuhl, A. H. Conney, and C. S. Yang, “Inhibition of N-nitrosodiethylamine- and 4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone-induced tumorigenesis in A/J mice by green tea and black tea,” Cancer Research, vol. 52, no. 7, pp. 1943–1947, 1992.
- M. Sazuka, S. Murakami, M. Isemura, K. Satoh, and T. Nukiwa, “Inhibitory effects of green tea infusion on in vitro invasion and in vivo metastasis of mouse lung carcinoma cells,” Cancer Letters, vol. 98, no. 1, pp. 27–31, 1995.
- S. Taniguchi, H. Fujiki, H. Kobayashi et al., “Effect of (-)-epigallocatechin gallate, the main constituent of green tea, on lung metastasis with mouse B16 melanoma cell lines,” Cancer Letters, vol. 65, no. 1, pp. 51–54, 1992.
- J. Liao, G. Y. Yang, E. S. Park et al., “Inhibition of lung carcinogenesis and effects on angiogenesis and apoptosis in A/J mice by oral administration of green tea,” Nutrition and Cancer, vol. 48, no. 1, pp. 44–53, 2004.
- Y. Cao and R. Cao, “Angiogenesis inhibited by drinking tea,” Nature, vol. 398, no. 6726, p. 381, 1999.
- S. Bettuzzi, M. Brausi, F. Rizzi, G. Castagnetti, G. Peracchia, and A. Corti, “Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study,” Cancer Research, vol. 66, no. 2, pp. 1234–1240, 2006.
- M. Shimizu, Y. Fukutomi, M. Ninomiya et al., “Green tea extracts for the prevention of metachronous colorectal adenomas: a pilot study,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 11, pp. 3020–3025, 2008.
- A. Brown, P. Jolly, and H. Wei, “Genistein modulates neuroblastoma cell proliferation and differentiation through induction of apoptosis and regulation of tyrosine kinase activity and N-myc expression,” Carcinogenesis, vol. 19, no. 6, pp. 991–997, 1998.
- J. N. Davis, O. Kucuk, and F. H. Sarkar, “Genistein inhibits NF-κB activation in prostate cancer cells,” Nutrition and Cancer, vol. 35, no. 2, pp. 167–174, 1999.
- R. A. Dixon and D. Ferreira, “Genistein,” Phytochemistry, vol. 60, no. 3, pp. 205–211, 2002.
- T. Fotsis, M. Pepper, H. Adlercreutz et al., “Genistein, a dietary-derived inhibitor of in vitro angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 7, pp. 2690–2694, 1993.
- T. Akiyama, J. Ishida, S. Nakagawa et al., “Genistein, a specific inhibitor of tyrosine-specific protein kinases,” Journal of Biological Chemistry, vol. 262, no. 12, pp. 5592–5595, 1987. V
- X. O. Shu, Y. Zheng, H. Cai et al., “Soy food intake and breast cancer survival,” Journal of the American Medical Association, vol. 302, no. 22, pp. 2437–2443, 2009.
- S. A. Lee, X. O. Shu, H. Li et al., “Adolescent and adult soy food intake and breast cancer risk: results from the Shanghai women’s health study,” American Journal of Clinical Nutrition, vol. 89, no. 6, pp. 1920–1926, 2009.
- C. Muir, J Waterhouse, T. Mack, et al., Cancer Incidence in Five Continents, vol. 5, International Agency for Research on Cancer, Lyon, France, 1987.
- R. K. Severson, A. M. Y. Nomura, J. S. Grove, and G. N. Stemmermann, “A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii,” Cancer Research, vol. 49, no. 7, pp. 1857–1860, 1989. V
- M. Jang, L. Cai, G. O. Udeani et al., “Cancer chemopreventive activity of resveratrol, a natural product derived from grapes,” Science, vol. 275, no. 5297, pp. 218–220, 1997.
- Y. Kimura and H. Okuda, “Resveratrol isolated from polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice,” Journal of Nutrition, vol. 131, no. 6, pp. 1844–1849, 2001.
- E. Bråkenhielm, R. Cao, and Y. Cao, “Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes,” The Federation of American Societies for Experimental Biology Journal, vol. 15, no. 10, pp. 1798–1800, 2001.
- A. A. E. Bertelli, R. Baccalini, E. Battaglia, M. Falchi, and M. E. Ferrero, “Resveratrol inhibits TNFα-induced endothelial cell activation,” Therapie, vol. 56, no. 5, pp. 613–616, 2001.
- K. Igura, T. Ohta, Y. Kuroda, and K. Kaji, “Resveratrol and quercetin inhibit angiogenesis in vitro,” Cancer Letters, vol. 171, no. 1, pp. 11–16, 2001.
- S. Banerjee, C. Bueso-Ramos, and B. B. Aggarwal, “Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-κB, cyclooxygenase 2, and matrix metalloprotease 9,” Cancer Research, vol. 62, no. 17, pp. 4945–4954, 2002.
- S. Sutcliffe, E. Giovannucci, M. F. Leitzmann et al., “A prospective cohort study of red wine consumption and risk of prostate cancer,” International Journal of Cancer, vol. 120, no. 7, pp. 1529–1535, 2007.
- W. B. Wu, H. S. Chiang, J. Y. Fang, and C. F. Hung, “Inhibitory effect of lycopene on POGF-BB-induced signalling and migration in human dermal fibroblasts: a possible target for cancer,” Biochemical Society Transactions, vol. 35, part 5, pp. 1377–1378, 2007.
- L. Chen, M. Stacewicz-Sapuntzakis, C. Duncan et al., “Oxidative DNA damage in prostate cancer patients consuming tomato sauce-based entrees as a whole-food intervention,” Journal of the National Cancer Institute, vol. 93, no. 24, pp. 1872–1879, 2001.
- C. C. Mandal, T. Ghosh-Choudhury, T. Yoneda, G. G. Choudhury, and N. Ghosh-Choudhury, “Fish oil prevents breast cancer cell metastasis to bone,” Biochemical and Biophysical Research Communications, vol. 402, no. 4, pp. 602–607, 2010.
- E. Ansó, A. Zuazo, M. Irigoyen, M. C. Urdaci, A. Rouzaut, and J. J. Martínez-Irujo, “Flavonoids inhibit hypoxia-induced vascular endothelial growth factor expression by a HIF-1 independent mechanism,” Biochemical Pharmacology, vol. 79, no. 11, pp. 1600–1609, 2010.
- M. Pilátová, V. Stupáková, L. Varinská et al., “Effect of selected flavones on cancer and endothelial cells,” General Physiology and Biophysics, vol. 29, no. 2, pp. 134–143, 2010.
- S. J. Oh, O. Kim, J. S. Lee et al., “Inhibition of angiogenesis by quercetin in tamoxifen-resistant breast cancer cells,” Food and Chemical Toxicology, vol. 48, no. 11, pp. 3227–3234, 2010.
- C. D. Davis, N. J. Emenaker, and J. A. Milner, “Cellular proliferation, apoptosis and angiogenesis: molecular targets for nutritional preemption of cancer,” Seminars in Oncology, vol. 37, no. 3, pp. 243–257, 2010.
- J. D. Kim, L. Liu, W. Guo, et al., “Chemical structure of flavanols in relation to modulation of angiogenesis and immune-endothelial cell adhesion,” Journal of Nutritional Biochemistry, vol. 17, no. 3, pp. 165–176, 2006.
- http://www.nal.usda.gov/fnic/foodcomp/Data/Other/EB03_VegFlav.pdf.
- D. Heimler, L. Isolani, P. Vignolini, S. Tombelli, and A. Romani, “Polyphenol content and antioxidative activity in some species of freshly consumed salads,” Journal of Agricultural and Food Chemistry, vol. 55, no. 5, pp. 1724–1729, 2007.
- C. D. Davis, N. J. Emenaker, and J. A. Milner, “Cellular proliferation, apoptosis and angiogenesis: molecular targets for nutritional preemption of cancer,” Seminars in Oncology, vol. 37, no. 3, pp. 243–257, 2010.
- J. D. Kim, L. Liu, W. Guo, et al., “Chemical structure of flavanols in relation to modulation of angiogenesis and immune-endothelial cell adhesion,” Journal of Nutritional Biochemistry, vol. 17, no. 3, pp. 165–176, 2006.
- K. A. Steinmetz, J. D. Potter, and A. R. Folsom, “Vegetables, fruit, and lung cancer in the Iowa women’s health study,” Cancer Research, vol. 53, no. 3, pp. 536–543, 1993.
- E. Dorant, P. A. V. D. Brandt, R. A. Goldbohm, and F. Sturmans, “Consumption of onions and a reduced risk of stomach carcinoma,” Gastroenterology, vol. 110, no. 1, pp. 12–20, 1996.
- L. S. Wang, S. S. Hecht, S. G. Carmella et al., “Anthocyanins in black raspberries prevent esophageal tumors in rats,” Cancer Prevention Research, vol. 2, no. 1, pp. 84–93, 2009.
- G. D. Stoner, T. Chen, L. A. Kresty, R. M. Aziz, T. Reinemann, and R. Nines, “Protection against esophageal cancer in rodents with lyophilized berries: potential mechanisms,” Nutrition and Cancer, vol. 54, no. 1, pp. 33–46, 2006.
- L. Gu, M. A. Kelm, J. F. Hammerstone et al., “Concentrations of proanthocyanidins in common foods and estimations of normal consumption,” Journal of Nutrition, vol. 134, no. 3, pp. 613–617, 2004.
- L. Gu, S. E. House, X. Wu, B. Ou, and R. L. Prior, “Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products,” Journal of Agricultural and Food Chemistry, vol. 54, no. 11, pp. 4057–4061, 2006.
- N. Camu, T. de Winter, S. K. Addo, J. S. Takrama, H. Bernaert, and L. de Vuyst, “Fermentation of cocoa beans: influence of microbial activities and polyphenol concentrations on the flavour of chocolate,” Journal of the Science of Food and Agriculture, vol. 88, no. 13, pp. 2288–2297, 2008.
- J. E. Kim, J. E. Son, S. K. Jung et al., “Cocoa polyphenols suppress TNF-α-induced vascular endothelial growth factor expression by inhibiting phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase kinase-1 (MEK1) activities in mouse epidermal cells,” British Journal of Nutrition, vol. 104, no. 7, pp. 957–964, 2010.
- J. Lu, K. Zhang, S. Nam, R. A. Anderson, R. Jove, and W. Wen, “Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling,” Carcinogenesis, vol. 31, no. 3, pp. 481–488, 2010.
- H. K. Kwon, W. K. Jeon, J. S. Hwang et al., “Cinnamon extract suppresses tumor progression by modulating angiogenesis and the effector function of CD8+ T cells,” Cancer Letters, vol. 278, no. 2, pp. 174–182, 2009.
- X. Wu, L. Gu, R. L. Prior, and S. McKay, “Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity,” Journal of Agricultural and Food Chemistry, vol. 52, no. 26, pp. 7846–7856, 2004.
- L. Gu, M. A. Kelm, J. F. Hammerstone et al., “Concentrations of proanthocyanidins in common foods and estimations of normal consumption,” Journal of Nutrition, vol. 134, no. 3, pp. 613–617, 2004.
- D. Feskanich, R. G. Ziegler, D. S. Michaud et al., “Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women,” Journal of the National Cancer Institute, vol. 92, no. 22, pp. 1812–1823, 2000.
- S. Gallus, R. Talamini, A. Giacosa et al., “Does an apple a day keep the oncologist away?” Annals of Oncology, vol. 16, no. 11, pp. 1841–1844, 2005.
- E. Bakkalbaşi, O. Menteş, and N. Artik, “Food ellagitannins-occurrence, effects of processing and storage,” Critical Reviews in Food Science and Nutrition, vol. 49, no. 3, pp. 283–298, 2009.
- N. P. Seeram, L. S. Adams, S. M. Henning et al., “In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice,” Journal of Nutritional Biochemistry, vol. 16, no. 6, pp. 360–367, 2005.
- H. Yoshiji, S. Kuriyama, R. Noguchi et al., “Amelioration of carcinogenesis and tumor growth in the rat liver by combination of vitamin K2 and angiotensin-converting enzyme inhibitor via anti-angiogenic activities,” Oncology Reports, vol. 15, no. 1, pp. 155–159, 2006.
- S. Perkins, R. D. Verschoyle, K. Hill et al., “Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 6, pp. 535–540, 2002.
- A. Goel, C. R. Boland, and D. P. Chauhan, “Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells,” Cancer Letters, vol. 172, no. 2, pp. 111–118, 2001.
- T. Dorai, Y. C. Cao, B. Dorai, R. Buttyan, and A. E. Katz, “Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo,” Prostate, vol. 47, no. 4, pp. 293–303, 2001.
- J. M. Yuan, D. O. Stram, K. Arakawa, H. P. Lee, and M. C. Yu, “Dietary cryptoxanthin and reduced risk of lung cancer: the Singapore Chinese health study,” Cancer Epidemiology Biomarkers and Prevention, vol. 12, no. 9, pp. 890–898, 2003.
- R. G. Mehta, J. Liu, A. Constantinou et al., “Cancer chemopreventive activity of brassinin, a phytoalexin from cabbage,” Carcinogenesis, vol. 16, no. 2, pp. 399–404, 1995.
- A. Garg, S. Garg, L. J. D. Zaneveld, and A. K. Singla, “Chemistry and pharmacology of the citrus bioflavonoid hesperidin,” Phytotherapy Research, vol. 15, no. 8, pp. 655–669, 2001.
- F. V. So, N. Guthrie, A. F. Chambers, M. Moussa, and K. K. Carroll, “Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices,” Nutrition and Cancer, vol. 26, no. 2, pp. 167–181, 1996.
- K. Akagi, M. Hirose, T. Hoshiya, Y. Mizoguchi, N. Ito, and T. Shirai, “Modulating effects of ellagic acid, vanillin and quercetin in a rat medium term multi-organ carcinogenesis model,” Cancer Letters, vol. 94, no. 1, pp. 113–121, 1995.
129. H. Kohno, T. Tanaka, K. Kawabata et al., “Silymarin, a naturally occurring polyphenolic antioxidant flavonoid, inhibits azoxymethane-induced colon carcinogenesis in male F344 rats,” International Journal of Cancer, vol. 101, no. 5, pp. 461–468, 2002.